In this paper, we provide an overview on the underlying response variable (URV) model-based approach to cluster and, optionally, simultaneously reduce ordinal and, optionally, continuous variables. We summarize and compare its main features discussing some key issues. An example of application to real data is illustrated comparing and discussing clustering performances.
Standard and novel model selection criteria in the pairwise likelihood estimation of a mixture model for ordinal data / Ranalli, M.; Rocci, R.. - (2016), pp. 45-53. - STUDIES IN CLASSIFICATION, DATA ANALYSIS, AND KNOWLEDGE ORGANIZATION. [10.1007/978-3-319-25226-1_5].
Standard and novel model selection criteria in the pairwise likelihood estimation of a mixture model for ordinal data
Ranalli M.;Rocci R.
2016
Abstract
In this paper, we provide an overview on the underlying response variable (URV) model-based approach to cluster and, optionally, simultaneously reduce ordinal and, optionally, continuous variables. We summarize and compare its main features discussing some key issues. An example of application to real data is illustrated comparing and discussing clustering performances.File | Dimensione | Formato | |
---|---|---|---|
Ranalli_Standard-and-novel_2016.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.02 MB
Formato
Adobe PDF
|
1.02 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.